Search results for "N assimilation"

showing 10 items of 17 documents

Iron operates as an important factor promoting year-round diazotrophic cyanobacteria blooms in eutrophic reservoirs in the tropics

2021

Abstract We hypothesize that iron availability plays an important role in driving phytoplankton structure and dynamics in tropical reservoir. This role has often been neglected in routine monitoring of water quality since the main focus has been addressed on macronutrients such phosphorus and nitrogen. To elucidate the potential regulation exerted by iron availability on phytoplankton, a limnological investigation was carried out in two neighboring eutrophic reservoirs in tropical China. Traditional physical and chemical variables were measured along with total and dissolved iron concentrations to explore how they could influence phytoplankton structure. Statistical analyses showed that dis…

0106 biological sciencesCyanobacteriaPhytoplankton dynamicsTropical reservoirsNitrogen assimilationIronGeneral Decision Scienceschemistry.chemical_elementYear-round cyanobacteria blooms010501 environmental sciences010603 evolutionary biology01 natural sciencesWater columnEpilimnionPhytoplanktonEcology Evolution Behavior and SystematicsQH540-549.50105 earth and related environmental sciencesbiologyEcologyPhosphorusfungibiology.organism_classificationchemistryEnvironmental chemistrySettore BIO/03 - Botanica Ambientale E ApplicataEnvironmental scienceWater qualityEutrophicationThermal regimeEcological Indicators
researchProduct

Grain legume seed filling in relation to nitrogen acquisition: A review and prospects with particular reference to pea

2001

International audience; Seed filling depends not only on the instantaneous supply of C and N, but also on their remobilisation from vegetative organs. C supply during seed filling depends mostly on current photosynthesis, but N assimilation and N$_2$ fixation decline during seed filling, with newly acquired N generally insufficient for the high seed demand. As seeds are strong sinks for mobilised nutrients, seed growth becomes metabolically closely associated with N remobilisation. N remobilisation from vegetative tissues to filling seeds interacts with photosynthesis since it induces senescence, which reduces the seed filling period. Hence improved grain legume seed filling requires either…

Ecophysiology[SDV.SA]Life Sciences [q-bio]/Agricultural sciencesN assimilationFixation symbiotique[SDV]Life Sciences [q-bio]chemistry.chemical_elementsénescenceBiologyPhotosynthesis03 medical and health sciencesSymbiosisBotanyMineral particlesAssimilation d'azoteLegumeComputingMilieux_MISCELLANEOUS030304 developmental biology2. Zero hunger[SDV.EE]Life Sciences [q-bio]/Ecology environment0303 health sciences[SDV.SA] Life Sciences [q-bio]/Agricultural sciencesRemobilisationAssimilation (biology)04 agricultural and veterinary sciencesNitrogenRemplissage des grainesSymbiotic fixationAgronomychemistrySeed filling040103 agronomy & agricultureNitrogen fixation0401 agriculture forestry and fisheriesAgronomy and Crop Science
researchProduct

Very high spectral resolution imaging spectroscopy: The Fluorescence Explorer (FLEX) mission

2016

The Fluorescence Explorer (FLEX) mission has been recently selected as the 8th Earth Explorer by the European Space Agency (ESA). It will be the first mission specifically designed to measure from space vegetation fluorescence emission, by making use of very high spectral resolution imaging spectroscopy techniques. Vegetation fluorescence is the best proxy to actual vegetation photosynthesis which can be measurable from space, allowing an improved quantification of vegetation carbon assimilation and vegetation stress conditions, thus having key relevance for global mapping of ecosystems dynamics and aspects related with agricultural production and food security. The FLEX mission carries the…

010504 meteorology & atmospheric sciencesSpectrometerbusiness.industry0211 other engineering and technologies02 engineering and technology01 natural sciencesFluorescenceImaging spectroscopyOpticsCarbon assimilationRadianceFLEXEnvironmental scienceSpectral resolutionSpectroscopybusiness021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
researchProduct

Novel Glutamate–Putrescine Ligase Activity in Haloferax mediterranei: A New Function for glnA-2 Gene

2021

This article belongs to the Section Cellular Biochemistry.

Salmonella typhimuriumTranscription GeneticNitrogen assimilationHaloferax mediterraneiGene ExpressionBiochemistryGlutamate-putrescine ligase activitySubstrate SpecificityLigasesAdenosine TriphosphateputrescineCloning MolecularPhylogenyhaloarchaeachemistry.chemical_classification0303 health sciencesbiologyChemistryHaloarchaeaEscherichia coli Proteinsglutamine synthetaseBioquímica y Biología MolecularQR1-502Recombinant ProteinsNitrogen assimilationHaloferax mediterraneiIsoenzymesBiochemistryArchaeal ProteinsGenetic VectorsGlutamic AcidGlutamate–putrescine ligaseMicrobiologyArticleglutamate–putrescine ligaseGlutamine synthetase03 medical and health sciencesAmmoniaGlutamine synthetaseNitrogen FixationEscherichia coliPutrescineAmino Acid SequenceMolecular Biology030304 developmental biologyDNA ligaseSequence Homology Amino Acid030306 microbiologyComputational Biologynitrogen assimilationbiology.organism_classificationMetabolic pathwayEnzymeProtein BiosynthesisHaloarchaeaGene Expression Regulation ArchaealSequence AlignmentBiomolecules
researchProduct

Environment-sensitivity functions for gross primary productivity in light use efficiency models

2022

International audience; The sensitivity of photosynthesis to environmental changes is essential for understanding carbon cycle responses to global climate change and for the development of modeling approaches that explains its spatial and temporal variability. We collected a large variety of published sensitivity functions of gross primary productivity (GPP) to different forcing variables to assess the response of GPP to environmental factors. These include the responses of GPP to temperature; vapor pressure deficit, some of which include the response to atmospheric CO2 concentrations; soil water availability (W); light intensity; and cloudiness. These functions were combined in a full fact…

0106 biological sciencesAtmospheric Science010504 meteorology & atmospheric sciencesVapour Pressure DeficitBiomeRandomly sampled sitesPlant Ecology and Nature ConservationForcing (mathematics)04 Earth Sciences 06 Biological Sciences 07 Agricultural and Veterinary SciencesAtmospheric sciences01 natural sciences[SDV.EE.ECO]Life Sciences [q-bio]/Ecology environment/EcosystemsFluxNetLaboratory of Geo-information Science and Remote SensingEvapotranspirationMeteorology & Atmospheric SciencesEcosystemLaboratorium voor Geo-informatiekunde en Remote SensingRadiation use efficiencySensitivity formulations0105 earth and related environmental sciencesGlobal and Planetary ChangeDiffuse fractionGlobal warmingModel equifinalityForestryModel comparison15. Life on landPE&RCLight intensity13. Climate actionEnvironmental sciencePlantenecologie en NatuurbeheerCarbon assimilationTemporal scalesAgronomy and Crop Science010606 plant biology & botany
researchProduct

The phosphorylated pathway of serine biosynthesis links plant growth with nitrogen metabolism

2021

Abstract Because it is the precursor for various essential cellular components, the amino acid serine is indispensable for every living organism. In plants, serine is synthesized by two major pathways: photorespiration and the phosphorylated pathway of serine biosynthesis (PPSB). However, the importance of these pathways in providing serine for plant development is not fully understood. In this study, we examine the relative contributions of photorespiration and PPSB to providing serine for growth and metabolism in the C3 model plant Arabidopsis thaliana. Our analyses of cell proliferation and elongation reveal that PPSB-derived serine is indispensable for plant growth and its loss cannot b…

0106 biological sciences0301 basic medicineNitrogenPhysiologyNitrogen assimilationCell RespirationArabidopsisPlant DevelopmentPlant Science01 natural sciencesSerine03 medical and health scienceschemistry.chemical_compoundPlant Growth RegulatorsBiosynthesisGlutamine synthetaseSerineGeneticsPhosphorylationResearch ArticlesCell Proliferationchemistry.chemical_classificationbiologyChemistryMetabolismBiosynthetic PathwaysAmino acid030104 developmental biologyBiochemistrybiology.proteinPhotorespirationGlutamine oxoglutarate aminotransferase010606 plant biology & botanyPlant Physiology
researchProduct

Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron upt…

2009

Abstract Nitric oxide (NO) functions as a cell-signaling molecule in plants. In particular, a role for NO in the regulation of iron homeostasis and in the plant response to toxic metals has been proposed. Here, we investigated the synthesis and the role of NO in plants exposed to cadmium (Cd2+), a nonessential and toxic metal. We demonstrate that Cd2+ induces NO synthesis in roots and leaves of Arabidopsis (Arabidopsis thaliana) seedlings. This production, which is sensitive to NO synthase inhibitors, does not involve nitrate reductase and AtNOA1 but requires IRT1, encoding a major plasma membrane transporter for iron but also Cd2+. By analyzing the incidence of NO scavenging or inhibition …

0106 biological sciencesroots[ SDV.BV ] Life Sciences [q-bio]/Vegetal BiologyPhysiologytoxic metalscadmiumNitrogen assimilationArabidopsischemistry.chemical_elementPlant ScienceNitrate reductase01 natural sciencesNitric oxide03 medical and health scienceschemistry.chemical_compoundArabidopsisGeneticsArabidopsis thaliana[SDV.BV]Life Sciences [q-bio]/Vegetal Biology030304 developmental biologyplasma membrane transporter2. Zero hunger0303 health sciencesCadmiumbiologyAtNOA1ACLNitric oxideMetabolismbiology.organism_classificationNitric oxide synthasechemistryBiochemistrybiology.proteiniron homeostasis010606 plant biology & botany
researchProduct

L‐Aspartate as a high‐quality nitrogen source in Escherichia coli : Regulation of L‐aspartase by the nitrogen regulatory system and interaction of L‐…

2020

Escherichia coli uses the C4-dicarboxylate transporter DcuA for L-aspartate/fumarate antiport, which results in the exploitation of L-aspartate for fumarate respiration under anaerobic conditions and for nitrogen assimilation under aerobic and anaerobic conditions. L-Aspartate represents a high-quality nitrogen source for assimilation. Nitrogen assimilation from L-aspartate required DcuA, and aspartase AspA to release ammonia. Ammonia is able to provide by established pathways the complete set of intracellular precursors (ammonia, L-aspartate, L-glutamate, and L-glutamine) for synthesizing amino acids, nucleotides, and amino sugars. AspA was regulated by a central regulator of nitrogen meta…

endocrine system diseasesNitrogenGlutaminePII Nitrogen Regulatory ProteinsNitrogen assimilationDeaminationGlutamic AcidBiologymedicine.disease_causeAspartate Ammonia-LyaseMicrobiology03 medical and health sciencesBacterial ProteinsAmmoniaEscherichia colimedicineProtein Interaction Domains and MotifsNucleotideMolecular BiologyEscherichia coliNitrogen cycle030304 developmental biologyDicarboxylic Acid Transporterschemistry.chemical_classificationAspartic Acid0303 health sciences030306 microbiologyEscherichia coli ProteinsAssimilation (biology)Gene Expression Regulation BacterialAmino acidEnzymechemistryBiochemistryMutationKetoglutaric AcidsMetabolic Networks and PathwaysMolecular Microbiology
researchProduct

Biostimulant Potential of Humic Acids Extracted From an Amendment Obtained via Combination of Olive Mill Wastewaters (OMW) and a Pre-treated Organic …

2018

Olive mill wastewaters (OMW) detain contain significant levels of phenolic compounds with antimicrobial/phytotoxic activity and high amounts of undecomposed organic matter that may a high pollutant load that exerts negative effects on soil biology because of significant levels in phenolic compounds with antimicrobial/phytotoxic activity and limited biodegradability, and high amounts of undecomposed organic matter. Among OMW detoxification techniques, those focusing on oxidative degradation of phenolic compounds are relevant those focusing on oxidative degradation of phenolic compounds to reduce their toxicity. The composting (bio-oxidation) process in particular, exploits exothermic oxidati…

amendmentsNitrogen assimilationAmendmentPlant Science010501 environmental scienceslcsh:Plant cultureNitrate reductase01 natural sciencesHumic acidOrganic matterlcsh:SB1-1110Original Research0105 earth and related environmental scienceschemistry.chemical_classificationnitrogen assimilation04 agricultural and veterinary sciencesglycolysisBiodegradationbio-oxidationZea Mays L.humic acidsFT-IRbiostimulantsAmendments; Bio-oxidation; Biostimulants; FT-IR; Glycolysis; Humic acids; Nitrogen assimilation; Zea mays L; Plant SciencechemistryEnvironmental chemistry040103 agronomy & agriculture0401 agriculture forestry and fisheriesPhytotoxicityZea mays LPlant nutritionFrontiers in Plant Science
researchProduct

DifferingDaphnia magnaassimilation efficiencies for terrestrial, bacterial, and algal carbon and fatty acids

2014

There is considerable interest in the pathways by which carbon and growth-limiting elemental and biochemical nutrients are supplied to upper trophic levels. Fatty acids and sterols are among the most important molecules transferred across the plant-animal interface of food webs. In lake ecosystems, in addition to phytoplankton, bacteria and terrestrial organic matter are potential trophic resources for zooplankton, especially in those receiving high terrestrial organic matter inputs. We therefore tested carbon, nitrogen, and fatty acid assimilation by the crustacean Daphnia magna when consuming these resources. We fed Daphnia with monospecific diets of high-quality (Cryptomonas marssonii) a…

NitrogenNitrogen assimilationDaphnia magnaDaphniaNutrientPhytoplanktonAnimalsEcology Evolution Behavior and Systematicschemistry.chemical_classificationMicrobial food webBacteriabiologyEcologyFatty AcidsfungiFatty acidPhosphorusbiology.organism_classificationCarbonSterolsDaphniachemistryPhytoplanktonEnergy MetabolismCryptophytaPolyunsaturated fatty acidEcology
researchProduct